Some difference results on Hayman conjecture and uniqueness
Authors
Abstract:
In this paper, we show that for any finite order entire function $f(z)$, the function of the form $f(z)^{n}[f(z+c)-f(z)]^{s}$ has no nonzero finite Picard exceptional value for all nonnegative integers $n, s$ satisfying $ngeq 3$, which can be viewed as a different result on Hayman conjecture. We also obtain some uniqueness theorems for difference polynomials of entire functions sharing one common value.
similar resources
some difference results on hayman conjecture and uniqueness
in this paper, we show that for any finite order entire function $f(z)$, the function of the form $f(z)^{n}[f(z+c)-f(z)]^{s}$ has no nonzero finite picard exceptional value for all nonnegative integers $n, s$ satisfying $ngeq 3$, which can be viewed as a different result on hayman conjecture. we also obtain some uniqueness theorems for difference polynomials of entire functions sharing one comm...
full textSome normality criteria of functions related a Hayman conjecture
* Correspondence: [email protected]; [email protected] School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China School of Economic and Management, Guangzhou University of Chinese Medicine, Guangzhou 510006, China Full list of author information is available at the end of the article Abstract In the article, we study the normality of families of meromorphic ...
full textglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On Lee's conjecture and some results
S.M. Lee proposed the conjecture: for any n > 1 and any permutation f in S(n), the permutation graph P (Pn, f) is graceful. For any integer n > 1 and permutation f in S(n), we discuss the gracefulness of the permutation graph P (Pn, f) if f = ∏l−1 k=0(m + 2k, m + 2k + 1), and ∏l−1 k=0(m+4k, m+4k +2)(m+4k +1, m+4k +3) for any positive integers m and l.
full textSome results on value distribution of the difference operator
In this article, we consider the uniqueness of the difference monomials $f^{n}(z)f(z+c)$. Suppose that $f(z)$ and $g(z)$ are transcendental meromorphic functions with finite order and $E_k(1, f^{n}(z)f(z+c))=E_k(1, g^{n}(z)g(z+c))$. Then we prove that if one of the following holds (i) $n geq 14$ and $kgeq 3$, (ii) $n geq 16$ and $k=2$, (iii) $n geq 22$ and $k=1$, then $f(z)equiv t_1g(z)$ or $f(...
full textSome New Results on Liu’s Conjecture
Consider the problem of scheduling n tasks with precedence constraint ≺ on m parallel processors so as to minimize the makespan. Let ω and ω′ be the makespans of the optimal nonpreemptive and optimal preemptive schedules, respectively. Liu’s conjecture states that ω ω′ ≤ 2m m+1 . In this paper, we present a simple proof of the conjecture for ≺= ∅, and give an improved bound closer to that in th...
full textMy Resources
Journal title
volume 38 issue 4
pages 1007- 1020
publication date 2012-12-15
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023